BNIP3 upregulation and EndoG translocation in delayed neuronal death in stroke and in hypoxia.
نویسندگان
چکیده
BACKGROUND AND PURPOSE Delayed neuronal death is a hallmark feature of stroke and the primary target of neuroprotective strategies. Caspase-independent apoptosis pathways are suggested as a mechanism for the delayed neuronal injury. Here we test the hypothesis that one of the caspase-independent apoptosis pathways is activated by BNIP3 and mediated by EndoG. METHODS We performed immunohistochemistry, Western blotting, cell transfection, subcellular fractionation, and RNA interfering to analyze the expression and localization of BNIP3 and EndoG in degenerating neurons in models of stroke and hypoxia. RESULTS BNIP3 was upregulated in brain neurons in a rat model of stroke and in cultured primary neurons exposed to hypoxia. The expressed BNIP3 was localized to mitochondria. Both forced expression of BNIP3 by plasmid transfection and induced expression of BNIP3 by hypoxia in neurons resulted in mitochondrial release and nuclear translocation of EndoG and neuronal cell death. Knockdown of BNIP3 by RNAi inhibited EndoG translocation and protected against hypoxia-induced neuronal death. CONCLUSIONS BNIP3 plays a role in delayed neuronal death in hypoxia and stroke and EndoG is a mediator of the BNIP3-activated neuronal death pathway. The results suggest that BNIP3 may be a new target for neuronal rescue strategies.
منابع مشابه
The Proapoptotic Protein BNIP3 Interacts with VDAC to Induce Mitochondrial Release of Endonuclease G
BNIP3 is a proapoptotic protein that induces cell death through a mitochondria-mediated pathway. We reported previously that mitochondrial localization of BNIP3 and translocation of EndoG from mitochondria to the nucleus are critical steps of the BNIP3 pathway. It is not clear, however, that how BNIP3 interacts with mitochondria. Here we show that expression of BNIP3 resulted in mitochondrial r...
متن کاملPoly (ADP-Ribose) Polymerase-1 causes mitochondrial damage and neuron death mediated by Bnip3, J Neurosci. 2014 Nov 26;34(48):15975-87
Hypoxia/ischemia is one of the major causes of mitochondrial dysfunction and neuronal cell death. So far, it has been reported that the DNA damage repair enzyme Poly (ADPRibose) Polymerase-1 (PARP1) gets activated during hypoxia/ischemia, leading to mitochondrial membrane permeability transition and caspase independent neuronal death mediated by nuclear translocation of the mitochondrial proapo...
متن کاملEndoG Links Bnip3-Induced Mitochondrial Damage and Caspase-Independent DNA Fragmentation in Ischemic Cardiomyocytes
Mitochondrial dysfunction, caspase activation and caspase-dependent DNA fragmentation are involved in cell damage in many tissues. However, differentiated cardiomyocytes repress the expression of the canonical apoptotic pathway and their death during ischemia is caspase-independent. The atypical BH3-only protein Bnip3 is involved in the process leading to caspase-independent DNA fragmentation i...
متن کاملPoly(ADP-ribose) polymerase-1 causes mitochondrial damage and neuron death mediated by Bnip3.
Excessive pathophysiological activity of the nuclear enzyme poly(ADP-ribose) polymerase-1 (PARP1) causes neuron death in brain hypoxia/ischemia by inducing mitochondrial permeability transition and nuclear translocation of apoptosis-inducing factor (AIF). Bcl-2/adenovirus E1B 19 kDa-interacting protein (Bnip3) is a prodeath BH3-only Bcl-2 protein family member that is induced in hypoxia, and ha...
متن کاملIntestinal and hepatic expression of BNIP3 in necrotizing enterocolitis: regulation by nitric oxide and peroxynitrite.
Necrotizing enterocolitis (NEC) is characterized by the upregulation of proinflammatory proteins, nitrosative stress, and increased enterocyte apoptosis. We examined the expression and regulation of the Bcl-2/adenovirus EIB 19-kDa-interacting protein 3 (BNIP3), a pro-apoptotic gene regulated by nitric oxide (NO) in hepatocytes, in NEC. Newborn rats subjected to hypoxia and fed a conventional fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Stroke
دوره 38 5 شماره
صفحات -
تاریخ انتشار 2007